The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing.
نویسندگان
چکیده
sae is a two-component signal transduction system in Staphylococcus aureus that regulates the expression of many virulence factors at the transcriptional level and appears to act synergistically with agr in some cases. In this study, the interactions between sae and agr have been characterized in some detail. It was found that the sae locus is larger and more complex than originally envisioned, in that it is expressed from several promoters, giving rise to four or five transcripts, at least three of which are initiated upstream of saeRS and contain two additional reading frames, here designated saeP and saeQ, which are likely to have important roles in sae function. The upstream transcripts are induced during exponential phase concomitantly with the onset of RNAIII synthesis and their induction requires the agr effector, RNAIII, but is blocked by several environmental signals that override the effects of RNAIII. saeR is also required for the induction of these transcripts, so that the sae locus contains an autoinduction circuit. It is suggested that sae is downstream of agr in the exoprotein activation pathway (and also epistatic with agr), that it coordinates the effects of environmental signals with the agr quorum-sensing system, and therefore that it is a key intermediary in the overall regulatory strategy by which S. aureus senses and responds to its environment.
منابع مشابه
Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus
Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide prod...
متن کاملTransient interference with staphylococcal quorum sensing blocks abscess formation.
The staphylococcal virulon is controlled largely by the agr locus, a global accessory gene regulator that is autoinduced by a self-coded peptide (AIP) and is therefore a quorum sensor. The agr locus has diverged within and between species, giving rise to AIP variants that inhibit heterologous agr activation, an effect with therapeutic potential against Staphylococcus aureus: a single dose of an...
متن کاملStaphylococcus aureus nuclease is an SaeRS-dependent virulence factor.
Several prominent bacterial pathogens secrete nuclease (Nuc) enzymes that have an important role in combating the host immune response. Early studies of Staphylococcus aureus Nuc attributed its regulation to the agr quorum-sensing system. However, recent microarray data have indicated that nuc is under the control of the SaeRS two-component system, which is a major regulator of S. aureus virule...
متن کاملQuorum Sensing in Microbial Virulence
Cell-to cell communication occurs via a signaling pathway referred to as quorum sensing. There are four main types of these systems according to the chemical nature of signal molecules used by microorganisms to elicit expression of target genes in response to environmental stimuli or need of microbial communities. Type I system acts by using acyl homoserine lactones as signals to trigger the ex...
متن کاملQuorum sensing in Staphylococcus infections.
Quorum sensing via the accessory gene regulator (agr) system has been assigned a central role in the pathogenesis of staphylococci, particularly Staphylococcus aureus. While the control of virulence gene expression in vitro by agr has been relatively straightforward to describe, regulation of both the quorum response itself and virulence genes in vivo is considerably more complex. The quorum re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 149 Pt 10 شماره
صفحات -
تاریخ انتشار 2003